Spatial Analysis of Digital Imagery of Weeds in a Maize Crop
نویسندگان
چکیده
Modern photographic imaging of agricultural crops can pin-point individual weeds, the patterns of which can be analyzed statistically to reveal how they are affected by variation in soil, by competition from other species and by agricultural operations. This contrasts with previous research on the patchiness of weeds that has generally used grid sampling and ignored processes operating at a fine scale. Nevertheless, an understanding of the interaction of biology, environment and management at all scales will be required to underpin robust precise control of weeds. We studied the spatial distributions of six common weed species in a maize field in central Spain. We obtained digital imagery of a rectangular plot 41.0 m by 10.5 m (= 430.5 m2) and from it recorded the exact coordinates of every seedling: more than 82,000 individuals in all. We analyzed the resulting body of data using three techniques: an aggregation analysis of the punctual distributions, a geostatistical analysis of quadrat counts and wavelet analysis of quadrat counts. We found that all species were aggregated with average distances across patches ranging from 3 cm–18 cm. Species with small seeds tended to occur in larger patches than those with large seeds. Several species had aggregation patterns that repeated periodically at right angles to the direction of the crop rows. Wheel tracks favored some species (e.g., thornapple), whereas other species (e.g., johnsongrass) were denser elsewhere. Interactions between species at finer scales (<1 m) were negligible, although a negative correlation between thornapple and cocklebur was evident. We infer that the spatial distributions of weeds at the fine scales are products both of their biology and local environment caused by cultivation, with interactions between species playing a minor role. Spatial analysis of such high-resolution imagery can reveal patterns that are not immediately evident from sampling at coarser scales and aid our understanding of how and why weeds aggregate in patches.
منابع مشابه
Spatio-temporal variation of wheat and silage maize water requirement using CGMS model
The Crop Growth Monitoring System (CGMS) has been applied for spatial biophysical resource analysis of Borkhar & Meymeh district in Esfahan province, Iran. The potentially suitable area for agriculture in the district has been divided into 128 homogeneous land units in terms of soil (physical characteristics), weather and administrative unit. Crop parameters required in the WOFOST simulatio...
متن کاملAccuracy and Feasibility of Optoelectronic Sensors for Weed Mapping in Wide Row Crops
The main objectives of this study were to assess the accuracy of a ground-based weed mapping system that included optoelectronic sensors for weed detection, and to determine the sampling resolution required for accurate weed maps in maize crops. The optoelectronic sensors were located in the inter-row area of maize to distinguish weeds against soil background. The system was evaluated in three ...
متن کاملWeed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images
The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band ...
متن کاملRemote Sensing for Site-specific Crop Management: Evaluating the Potential of Digital Multi-spectral Imagery for Monitoring Crop Variability and Weeds within Paddocks
This paper analyses the potential and limitations of airborne remote sensing systems for detecting crop growth variability and weed infestation within paddocks at specified capture times. The detection of areas of crop growth variability can help farmers become aware of regions within their paddock where they may be experiencing above and below average yields due to changes in soil or managemen...
متن کاملAn Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery
Accurate and timely detection of weeds between and within crop rows in the early growth stage is considered one of the main challenges in site-specific weed management (SSWM). In this context, a robust and innovative automatic object-based image analysis (OBIA) algorithm was developed on Unmanned Aerial Vehicle (UAV) images to design early post-emergence prescription maps. This novel algorithm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 7 شماره
صفحات -
تاریخ انتشار 2018